$15N$ Chemically Induced Dynamic Nuclear Polarization ($15N$ -CIDNP) Investigations of the Peroxynitrite Decay and Nitration of N-Acetyl-L-tyrosine

by Manfred Lehnig^{*a}) and Michael Kirsch^{*b})

^a) Organische Chemie, Fachbereich Chemie, Universität Dortmund, Otto-Hahn-Strasse 6, D-44221 Dortmund

b) Institut für Physiologische Chemie, Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen

In Erinnerung an Hanns Fischer

During the decay of (^{15}N) peroxynitrite $(O=^{15}NOO^-)$ in the presence of N-acetyl-L-tyrosine (Tyrac) in neutral solution and at 268 K, the ¹⁵N-NMR signals of ${}^{15}NO_2^-$ and ${}^{15}NO_3^-$ show emission (*E*) and enhanced absorption (A) as it has already been observed by *Butler* and co-workers in the presence of L-tyrosine (Tyr). The effects are built up in radical pairs $[CO_3^{-15}NO_2^{\bullet}]$ ^s formed by O–O bond scission of the (^{15}N) peroxynitrite–CO₂ adduct $(O=^{15}NO-OCO₂)$. In the absence of Tyrac and Tyr, the peroxynitrite decay rate is enhanced, and ¹⁵N-CIDNP does not occur. This is explained by a chain reaction during the peroxynitrite decay involving N_2O_3 and radicals NO⁺ and NO². The interpretation is supported by ¹⁵N-CIDNP observed with (¹⁵N)peroxynitrite generated in situ during reaction of H_2O_2 with N-acetyl-N- (^{15}N) nitroso-DL-tryptophan $((^{15}N)NANT)$ at 298 K and pH 7.5. In the presence of Na¹⁵NO₂ at pH 7.5 and in acidic solution, ¹⁵N-CIDNP appears in the nitration products of Tyrac, $1-(15N)$ nitro-N-acetyl-L-tyrosine $(1^{-15}NO₂-Tyrac)$ and $3-(^{15}N)$ nitro-N-acetyl-L-tyrosine $(3^{-15}NO₂-Tyrac)$. The effects are built up in radical pairs $[\text{Tyrac}, \text{^{15}NO}_2^{\text{}}]^\text{F}$ formed by encounters of independently generated radicals Tyrac and $\text{^{15}NO}_2^{\text{}}$. Quantitative 15N-CIDNP studies show that nitrogen dioxide dependent reactions are the main if not the only pathways for yielding both nitrate and nitrated products.

1. Introduction. – Peroxynitrous acid (O=NO–OH, pK 6.5–6.8) is known since about one century as an instable intermediate during reaction of hydrogen peroxide (H_2O_2) with nitrous acid (HNO_2) [1] which slowly decays to the isomeric nitric acid and has nitrating properties as well [2] (Scheme 1). It is also formed by reaction of H_2O_2 with nitroso compounds like N-acetyl-N-nitroso-DL-tryptophan (NANT) [3]. In recent years, peroxynitrite – this term is commonly used for the acid–base equilibrium mixture of peroxynitrous acid ($O=NO-OH$) and peroxynitrite anion $(O=NOO^{-})$ – has received considerable attention as a putative cytotoxic agent in living organisms where it may be produced by recombination of endogeneous nitric oxide (NO^c) and superoxide anion $(O_2^{\text{-}})$ [4]. Its participation within more than 80 diseases has been proposed [5]. It may react with L-tyrosine (Tyr) and tyrosine residues in proteins to form 3 nitrotyrosine $(3-NO₂-Tyr)$ and derivatives which might be useful markers of oxidants like peroxynitrite [6].

The mechanism of the peroxynitrite isomerization and nitration reactions was in discussion for a long time. A radical mechanism is generally accepted now (Scheme 2) [7]. The first step is an O-O bond homolysis giving hydroxyl radicals ('OH) and nitrogen dioxide (NO₂). In the presence of CO_2 , a decay reaction *via* a peroxyni-

 Q 2006 Verlag Helvetica Chimica Acta AG, Zürich

trite–CO₂ adduct (O=NO–OCO₂) has been proposed leading to both NO₂ and CO₃⁻ [8]. In a second step, the radicals react by O⁻ transfer to NO_3^- or by H abstraction from Tyr to tyrosinyl radicals Tyr. The $3-NO_2$ -Tyr is then formed by recombination of radicals $NO₂$ and Tyr' (*Scheme 2*).

The occurrence of radicals has been shown by ESR spectroscopy $[9-11]$. Solvent cages have been postulated because of radical scavenging experiments leading to a yield of ca. 30% hydroxyl radicals and nitrogen dioxide during the peroxynitrite decay [2][12] and of 30–33% $NO₂$ and $CO₃$ ⁻ radicals from the decomposition of the peroxynitrite $-CO_2$ adduct [11] [13] [14]. Butler and co-workers were able to establish the existence of *solvent cages* by the observation of 15 N-CIDNP in the 15 N-NMR signals of ${}^{15}NO_2^-$ and ${}^{15}NO_3^-$ during decay of $({}^{15}N)$ peroxynitrite¹) in the presence of Tyr in neutral and basic solution [15]. However, there are two puzzling observations which cannot be explained by using *Scheme 2* without further assumptions. The first one is the missing of $3-NO₂$ -Tyr formation. The second one is the lack of ¹⁵N-CIDNP effects in the absence of Tyr. For explaining these results, it has to be considered that the validity of Scheme 2 has been proven under physiological conditions. Reaction conditions applied during the ¹⁵N-CIDNP experiments – mainly temperature and educt concentrations – are different from those. Therefore, the details of the peroxynitrite decay are more complex than described in *Scheme 2*. A recent kinetic simulation took into account 117 elementary reactions [16]. It seems very likely that, for understanding the 15N-CIDNP observations, additional reactions have to be taken into account.

The purpose of this report is to get a better understanding of the ¹⁵N-CIDNP results of Butler and co-workers [15] by describing the reaction mechanisms of peroxynitrite decay and nitration under ¹⁵N-CIDNP conditions. For doing this, N-acetyl-L-tyrosine (Tyrac) is used as an educt instead of L -tyrosine as its solubility in H_2O is better than that of L-tyrosine. A few results have already been obtained with (^{15}N) peroxynitrite generated in situ during reactions of H₂O₂ with N-acetyl-N- (^{15}N) nitroso-DL-tryptophan $((¹⁵N)NANT)$ and of H_2O_2 with $Na¹⁵NO₂$ (*cf. Scheme 1*) [3] [17] [18]. They are summarized in Sect. 2. By using these precursors, ¹⁵N-CIDNP effects have been observed in

¹) For convenience, we use the IUPAC-recommended conventions for isotopically substituted species also for isotopically labeled species.

acidic solution during (¹⁵N)peroxynitrite decay as well as during Tyrac nitration [3] [18]. It has been shown by quantitative ¹⁵N-CIDNP experiments that the radical mechanism is the main if not the only nitration pathway during reaction of H_2O_2 with Na¹⁵NO₂ [18]. The $H_2O_2/(15N)NANT$ system shows the expected $15N$ -CIDNP effects in the $15N-NMR$ signals of ¹⁵NO₂ and ¹⁵NO₃ at room temperature in neutral solution, too [3], in contrast to the results during decay of authentic (^{15}N) peroxynitrite at lower temperatures [15]. In Sect. 4, detailed $15N$ -CIDNP investigations will be described, performed with authentic (^{15}N) peroxynitrite at pH 7.5 at low temperatures, and explained by reaction of peroxynitrite with N_2O_3 and by decay of peroxynitric acid. N_2O_3 as well as peroxynitric acid are unstable reaction intermediates during the decomposition of peroxynitrite. The occurrence of hydroxyl radicals will be demonstrated by reaction with nitrite during unlabeled peroxynitrite decay in the presence of $^{15}NO_2^-$. The influence of CO_2 on the ^{15}N -CIDNP effects will be shown during decay of (^{15}N) peroxynitrite generated *in situ* by reaction of Na¹⁵NO₂ with H₂O₂ in the presence of NaHCO₃. Furthermore, quantitative 15N-CIDNP experiments were performed during formation of nitrate and nitrated products of N-acetyl-L-tyrosine by using different sources of (^{15}N) peroxynitrite. They

will be discussed in terms of *Pedersen*'s quantitative treatment of the radical-pair theory.

2. Application of CIDNP to Mechanistic Studies. – 2.1. The CIDNP Effect. In 1967, Bargon, Fischer, and Johnsen observed emission and enhanced absorption signals in NMR spectra during decay reactions of organic peroxides in the probe of an NMR spectrometer [19]. The unusual signal intensities indicate the appearance of nuclear polarizations in the products of radical reactions (CIDNP). Following the radicalpair theory first proposed by Closs and Kaptein, nuclear polarizations are built up in radical pairs which are formed by homolytic $O-O$ bond scission of peroxides from singlet states (S pairs). They might also be generated in radical pairs formed by diffusive encounters of independently generated radicals (F pairs) [20]. The appearance of CIDNP is used to establish the radical character of chemical reactions, particularly the product formation via radical pairs. If radicals are formed during peroxynitrite decay and nitration reactions, the formation of S as well as of F pairs is expected (Scheme 2) leading to CIDNP. Nuclear polarizations are not generated in radical pairs containing radicals with axial symmetry and degenerated orbitals like HO', O_2^{\leftarrow} , or NO[.] [21]. Because of this, radical pairs $[HO; NO₂]$ ^s formed by O-O bond scission of peroxynitrite should not lead to CIDNP effects.

N-Containing radicals and reaction products are involved during peroxynitrite decay and nitration reactions. Therefore, it is convenient to apply $15N-NMR$ spectroscopy. This requires the use of ^{15}N -enriched compounds. ^{15}N -CIDNP effects which are expected from thermal reactions of ¹⁵NO₂ and free radicals R' with $g(R') > g(^{15}NO_2')$ are exemplified in Scheme 3 [20] [22].

Scheme 3. ¹⁵N-CIDNP Effects from Reactions of ¹⁵NO₂ with Radicals R assuming $g(R) > g(^{15}NO_2)$. E=emission, A=enhanced absorption.

 $R^{-15}NO_2$ (singlet precursors, S) $\longrightarrow R^* + {^{15}NO_2}^* \longleftarrow$ (radical encounters, F) $\begin{array}{ccccc}\n & & & & \\
 & & & & \\
\hline\n\end{array}$ $\begin{array}{ccccc}\n & & & & \\
\text{[R', }\ ^{15}\text{NO}_2\text{'}]^{S,F} & \xrightarrow{\mathcal{C'}}\mathcal{C'}\n\end{array}$ escape ('e') products (E/A)

cage ('c') products (A/E)

Radicals which react within the radical pairs give cage ($\langle c \rangle$) products showing A(E) if arising from $S(F)$ pairs (A=enhanced absorption, E=emission). This allows to distinguish between S and F precursors. Radicals which do not react within the pairs form escape (e^i) products giving CIDNP patterns of opposite signs. The analysis of CIDNP effects allows a differentiation between product formation $via 'c'$ or 'e' reactions, too. CIDNP Intensities are dependent on magnetic and diffusive properties of the radicals and the reaction products. The appearance of CIDNP, therefore, does not allow a simple answer to the question as to whether a radical path is the main reaction or only a side reaction. For judging this, CIDNP intensities have to be compared with those observed during well-known radical reactions or those calculated by quantitative treatments of the radical-pair theory. Both ways will be used in the following.

For a quantitative description of CIDNP, an enhancement factor E has been introduced [20] which is the ratio between the intensity of the NMR signal I immediately

after formation of the polarized product within $t\!\ll T_1$ and the NMR signal I_o after stopping the reaction taken at $t \gg T_1$ (t: reaction time; T_1 : longitudinal nuclear relaxation time) (Eqn. 1). If the reaction time t is much longer than T_1 , E is determined from *Eqn.* 2 [23]. I_i is the signal intensity during the i^{th} measurement, $t(i,i+1)$ the time interval between the ith and the $(i+1)th$ pulse. The summation is carried out as long as the CIDNP effects are observed. Eqn. 2 is an extension of the relation $E=It/I_0T_1$ which has been used for 0th-order reactions [24]. This approximation is valid if $t \gg T_1$ and $I \gg I_0$.

$$
E = I/I_o \tag{1}
$$

$$
E = \sum I_i \Delta t (i, i+1) / I_0 T_1 \tag{2}
$$

2.2. Nitration of Tyrac with $H^{15}NO_3$ in Acidic Medium and with the System $^{15}NO_2^-/$ H_2O / Horseradish Peroxidase (HRP) in Neutral Solution. For comparison, Tyrac has been nitrated by systems different from (^{15}N) peroxynitrite. In acidic solution, (^{15}N) nitric acid has been applied as nitrating agent [15] [18]. The nitrous acid catalyzed nitration of phenolic compounds with nitric acid is known to be a radical reaction which has been confirmed by $\frac{15}{15}$ N-CIDNP [22] [23]. For instance, the $\frac{15}{15}$ N-NMR signals of 2- $(15N)$ nitrophenol and 4- $(15N)$ nitrophenol appear in emission during nitration of phenol with $H^{15}NO₃$ in AcOH [23]. An E value of -1180 has been determined for 2- (^{15}N) nitrophenol (see below, *Table 7*). During reaction of *N*-acetyl-L-tyrosine (Tyrac) with $H^{15}NO_3$, 3-(¹⁵N)nitro-N-acetyl-L-tyrosine (3-¹⁵NO₂-Tyrac) and 1-(¹⁵N)nitro-N-acetyl-L-tyrosine $(1^{-15}NO_2$ -Tyrac) are formed; the ¹⁵N-NMR signals appear in emission, too. The ¹⁵N-CIDNP effects are built up in radical pairs [Tyrac, ${}^{15}NO_2^{\bullet}$]^F formed by encounters of the radicals Tyrac and ¹⁵NO₂ (*Schemes 3* and *4*). An *E* value of -1440 has been determined for the ¹⁵N-NMR signal of 3 ⁻¹⁵NO₂-Tyrac in AcOH which is similar to that observed in 2- (^{15}N) nitrophenol during nitration of phenol with (^{15}N) nitric acid (see below, Table 7) [18].

Scheme 4. ¹⁵N-CIDNP in Nitration Products of Tyrac during Nitrous Acid Catalyzed Reaction with $H^{15}NO_3$. E=emission.

$$
\begin{array}{ccccccc}\n\text{Tyrac} & & & \text{HNO}_2 & & & & & \\
\hline\n& & & & & & & & & \\
 & & & & & & & & \\
 & & & & & & & & \\
 & & & & & & & & \\
 & & & & & & & & \\
 & & & & & & & & & \\
 & & & & & & & & & \\
 & & & & & & & & & \\
 & & & & & & & & & \\
 & & & & & & & & & \\
 & & & & & & & & & & \\
 & & & & & & & & & & \\
 & & & & & & & & & & \\
 & & & & & & & & & & \\
 & & & & & & & & & & & \\
 & & & & & & & & & & & \\
 & & & & & & & & & & & & \\
 & & & & & & & & & & & & \\
 & & & & & & & & & & & & \\
 & & & & & & & & & & & & \\
 & & & & & & & & & & & & \\
 & & & & & & & & & & & & \\
 & & & & & & & & & &
$$

In neutral solution, Tyrac has been nitrated by the system ${}^{15}NO_2^-/H_2O_2/HRP$ [18]. During the reaction, the ¹⁵N-NMR signals of $1^{-15}NO_2$ -Tyrac and $3^{-15}NO_2$ -Tyrac appear in emission indicating their formation by recombination of the radicals Tyrac and ¹⁵NO₂, too. Additionally, the ¹⁵N-NMR signal of ¹⁵NO₂ appears in enhanced absorption which is an 'e' type effect built up in radical pairs $[T\text{yrac}, \, {}^{15}\text{NO}_2^{\cdot}]^{\text{F}}$ and transferred to $^{15}NO₂$ by reactions between the radicals $^{15}NO₂$ (Schemes 2 and 5). Because of long reaction times (ca. 10 h), an enhancement factor was not determined.

Scheme 5. ¹⁵N-CIDNP in Nitration Products of Tyrac and in $^{15}NO_2^-$ during Reaction with $^{15}NO_2^ H_2O$ / Horseradish Peroxidase (HRP) at pH 7. E = emission, A = enhanced absorption.

\n
$$
\text{Tyrac } + \frac{15}{15} \text{NO}_2^- + \text{H}_2\text{O}_2 \xrightarrow{-\text{H}_2\text{O}, -\text{H}_2}
$$
\n

\n\n $\text{Tyrac } + \frac{15}{15} \text{NO}_2 \cdot \xrightarrow{\text{G}'} \text{Tyrac } + \frac{15}{15} \text{NO}_2 \cdot \xrightarrow{\text{G}'} \text{Tyrac } + \frac{15}{15} \text{NO}_2 \cdot \text{Tyrac } + \frac{15}{15} \text{NO}_2 \$

2.3. Nitration of Tyrac with (^{15}N) Peroxynitrite at pH ca. 5. Peroxynitrite decay and nitration of Tyrac have been studied at pH ca. 5 by using in situ generated ⁽¹⁵N)peroxynitrite in the presence of NaHCO₃ (Scheme 1) [3][17][18]. During decay of $({}^{15}N)$ peroxynitrite, the ${}^{15}N$ -NMR signals of ${}^{15}NO_3^-$ and of ${}^{15}NO_2^-$ show enhanced absorption and emission. In the presence of Tyrac, $1^{-15}NO_2$ -Tyrac and $3^{-15}NO_2$ -Tyrac appear in emission, too. The nuclear polarizations are built up in radical pairs formed by O–O bond scission of the (^{15}N) peroxynitrite–CO₂ adduct, $[CO_3^{-}, ^{15}NO_2^{\bullet}]^S$, and by encounters of the radicals Tyrac[•] and ¹⁵NO[•]₂, [Tyrac[•], ¹⁵NO[•]₂]^F. The results are listed in Scheme 6 and correspond to the radical mechanism of peroxynitrite decay and nitration (Scheme 2). An enhancement factor E of -1520 has been determined for the ¹⁵N-NMR signal of $3¹⁵NO₂$ -Tyrac during reaction of H₂O₂ with Na¹⁵NO₂ in the presence of Tyrac and NaHCO₃ (see below, *Table 7*) [18]. This value corresponds to that obtained during nitration of Tyrac with $H^{15}NO₃$ (-1440) establishing the radical character of the peroxynitrite nitration.

2.4. Calculation of CIDNP enhancement factors E_{calc} . For determining theoretical enhancement factors E_{calc} for ¹⁵N-NMR signals of 3-¹⁵NO₂-Tyrac formed in F pairs, Pedersen's treatment of the radical-pair theory has been applied $[23 - 26]$. It encloses quantities characterizing the magnetic properties and diffusion behavior of radicals and specific parameters describing the radical pair. g Values and hyperfine coupling constants a are known from ESR investigations [27] as well as transversal relaxation times T_2 of the radical electrons which are obtained from the linewidths of ESR signals. The diffusional behavior is described by diffusion constants $D=kT/6\pi\eta r$, with the viscosity η of the solvent and the radius r of the radical, which might be estimated from radical models. Pedersen's model-specific parameters are λ , the probability of reaction per radical encounter, p , the probability of at least one encounter, d , the distance of closest approach during an encounter, and Λ , the spin-independent probability of reaction of singlets for the entire collision, including all spin-independent re-encounters. $\lambda = 0.46$, $p = 0.32$, $d =$ $4 \text{ Å} = 2r$, and $\Lambda = 0.5$ have been taken for calculating H-CIDNP effects in recombination products of the free-diffusing C-centered radicals 'Me, 'CHCl₂, 'CH₂COMe and $CHCICO₂H$ [24] [26]. They are also suitable for describing ¹¹⁹Sn-CIDNP in Me₆Sn₂ formed by recombination of trimethylstannyl radicals [26]. They have been applied for describing ¹⁵N-CIDNP in nitration products of phenol in AcOH [23]. By using T_2 $(NO₂) = 5.10⁻¹⁰$ s [28], a_N (¹⁵NO₂) = 76.4 G [28], g (NO₂) = 2.000 [28], g

Scheme 6. ¹⁵N-CIDNP during Decay of $({}^{15}N)$ Peroxynitrite in situ Generated at pH ca. 5 in the Presence of NaHCO₃. E=emission, A=enhanced absorption.

 (PhO^o) = 2.0046 [27], and η (AcOH) = 1.056 mPa·s, E_{calc} = -1260 was obtained which agrees well with the experimental value for $2-(15N)$ nitrophenol (-1180; see below, Table 7) [23]. The same E_{calc} value has been accepted for the ¹⁵N-NMR signal of $3^{-15}NO_2$ -Tyrac during nitration of Tyrac with $H^{15}NO_3$ in AcOH because of $g(Tyrac²) = g(PhO²)$ [29].

3. Experimental. – 3.1. ¹⁵N-CIDNP Experiments with Authentic (^{15}N) Peroxynitrite. Stock solns. of ⁽¹⁵N)peroxynitrite (0.71 \pm 0.02M O=NOO⁻/0.435 \pm 0.01M O=¹⁵NOO⁻) were prepared by reaction of isoamyl (^{15}N) nitrite (=3-methylbutyl (^{15}N) nitrite; 0.12 mol/0.0024 mol) with hydrogen peroxide (100 ml $H_2O_2/2$ ml H_2O_2 , 1M each) in solns. free of diethylenetriaminepentaacetic acid (=N,N-bis{2-[bis(carboxymethyl)amino]ethyl]glycine) and purified (6 x solvent extraction with hexane, removal of excess H_2O_2 by passing over MnO_2 , and N_2 purging) as described by Uppu and Pryor [30], divided into 200-µ aliquots in 1-ml Eppendorf vials, and stored at -79° in the dark. The reaction mixtures were prepared in 10-mm NMR tubes by adding (^{15}N)peroxynitrite to the frozen solvent (H₂O/D₂O 9:1) containing phosphate buffer (0.3M) and, if required, further additives like NaHCO₃ (0.05M), Tyrac (0.05M), or Na¹⁵NO₂ (2M; for reactions with peroxynitrite $O=NOO^-$ at 268 K. The final pH after mixing was 7.5. The tubes were quickly transferred into the probe of the ¹⁵N-NMR spectrometer (*Bruker DPX-300*) and locked (internal lock: D_2O). One minute after mixing of the reactants, the first ¹⁵N-NMR spectrum was taken by using single pulses with pulse angles of 90° . This procedure was repeated every minute until the reaction was completed. For detecting reaction products, ¹⁵N-NMR spectra were taken with several pulses at room temperature.

3.2. ¹⁵N-CIDNP Experiments with in situ Generation of (^{15}N) Peroxynitrite. A soln. of N-acetyl-N-⁽¹⁵N)nitroso-DL-tryptophan (0.1*M*) or Na¹⁵NO₂ (0.05*M*) in H₂O/D₂O 9:1, containing phosphate buffer $(0.3M)$ and, when needed, NaHCO₃ $(0.05M)$ or Tyrac $(0.05M)$, was prepared in 10-ml tubes, and a single

¹⁵N-NMR spectrum was taken by using a 90° pulse. After that, the tube was replaced, and H_2O_2 (1M or $3M$) was added to the soln. ¹⁵N-NMR Spectra were then taken every $1-5$ min until the reaction was completed.

3.3. Determination of I and T_1 . ¹⁵N-NMR Intensities I were directly taken from the signal-to-noise ratios by using single 90° pulses. During single runs, signal intensities are proportional to concentrations within ca. 5%. I Values taken during different runs differ within ca. 20%. T_1 Values were determined after completion of the reactions under the conditions of the experiment applying π - $\pi/2$ pulse sequences.

3.4. Materials and Solutions. It was taken care to exclude possible contamination by $CO₂$ and transition-metal ions. The following procedures were performed under N_2 and at reduced incident light. Doubly distilled H₂O was bubbled (2 I min^{-1}) with N₂ (5.0) at r.t. for 20 min and was then treated with the heavy-metal-ion scavenger resin Chelex 100 (0.5 g in 10 ml) by gently shaking for 18 h in the dark. After separation from the resin by low-speed centrifugation for 5 min and careful decanting, the $H₂O$ was again bubbled with $N₂$ for 20 min.

N-Acetyl-N-(15N)nitroso-DL-tryptophan ((15N)NANT) was prepared according to a procedure described by *Bonnett* and *Holleyhead* and improved by us [31]. Na¹⁵NO₂ and isoamyl (¹⁵N)nitrit were purchased from Aldrich/Isotec Inc. (Taufkirchen, Germany). All other chemicals were from Sigma (Deisenhofen, Germany) and were of the highest purity available.

4. Results and Discussion. $-$ 4.1. ¹⁵N-CIDNP Experiments with Authentic (^{15}N) Peroxynitrite at pH 7.5. The protonated form of peroxynitrite decays with a rate of $1.3 s^{-1}$ at 298 K [32]. Therefore, ¹⁵N-CIDNP experiments were performed at low temperatures. At pH 7.5, the (¹⁵N)peroxynitrite decay was studied at 268 K in CO_2 -free solutions as well as in the presence of NaHCO₃. During the reactions, $^{15}N\text{-}NMR$ signals of ${}^{15}NO_2^-$ and ${}^{15}NO_3^-$ appear within 3 min indicating the end of the reaction at that time. 15 N-CIDNP Effects are not observed. Some further details are given in Table 1. An apparent decay rate constant $k>0.01$ s⁻¹ follows from the time dependence of the ¹⁵N-NMR signal intensities *I* listed in *Table 2, a*. The results agree with observations reported by *Butler* and co-workers [15]. In addition to this, *Short* reports that ${}^{15}NO_3^$ and ${}^{15}NO_2^-$ might show weak emission signals during the reaction [33].

The missing of ^{15}N -CIDNP in the absence of $CO₂$ is not in contradiction to the general radical-decay mechanism of peroxynitrite (Scheme 2). Radical pairs [¹⁵NO₂, 'OH]^S formed by O–O bond scission of (^{15}N) peroxynitrite are not capable to build up nuclear polarizations. The weak emission-type effects observed in the ¹⁵N-NMR signals of $^{15}NO_2^-$ and $^{15}NO_3^-$ show that, if any, only a few radical pairs are present during the $(15N)$ peroxynitrite decay which are capable to generate $15N$ -CIDNP. They might be formed by a side reaction during the (^{15}N) peroxynitrite decay which will be discussed later. The missing of ^{15}N -CIDNP in the presence of NaHCO₃ shows that the $($ ¹⁵N) peroxynitrite–CO₂ adduct is not formed under the reaction conditions or, if present, does not decay. It is obvious that Scheme 6 is not valid for describing the decay of $(15N)$ peroxynitrite. We think that free CO₂ is not present which will be discussed in detail, too.

In the presence of Tyrac and of NaHCO₃, the ¹⁵N-NMR signal of ¹⁵NO₂ shows emission and the signal of $\mathrm{^{15}NO_3^-}$ enhanced absorption for 6–10 min. Nitration products are not formed. This surprising result is in accordance with observations of Butler and coworkers during decay of (^{15}N) peroxynitrite in the presence of L-tyrosine [15]. Details of the reaction are listed in Table 1, signal intensities I in Table 2, b. A spectrum taken 3 min after preparing the reaction solution is given in $Fig. 1, a$. The time dependence of the signal intensities is complex, as the conditions drastically change during the reac-

System	15 N-NMR Signals ^a)	CIDNP ^b) Yield ^c) E^d		
(^{15}N) Peroxynitrite (0.03m), T 268 K, NaHCO ₃ (0.05m),	$8.8(^{15}NO_2^-)$	N	4.0	
pH 7.5 (<i>Table 2,a</i>) ^e)	241.9 $(^{15}NO_2^-)$	N	1.8	
(^{15}N) Peroxynitrite (0.1m), T ca. 273 K, pH 7.6 [15] [33]	5.6 $(^{15}NO_2^-)$	N(E?)		
	238.8 $(^{15}NO_2^-)$	N(E?)		
(^{15}N) Peroxynitrite (0.03 _M), <i>T</i> 268 K, Tyrac (0.05 _M),	ca. 7 $(3^{-15}NO_2$ -Tyrac) –		< 0.03	
NaHCO ₃ (0.05 _M), pH 7.5 (<i>Fig. 1, Table 2,b</i>)	$8.8(^{15}NO_2^-)$	A	4.2	60
	241.9 $(^{15}NO_2^-)$	E	2.2	
Peroxynitrite (0.2M), $T268$ K, Tyrac (0.1M), Na ¹⁵ NO ₂	7.2 ($3-15NO_2$ -Tyrac)	Ε	0.32	-400
$(2M)$, NaHCO ₃ (0.05M), pH 7.5 (<i>Fig. 2, a</i> and <i>b</i> , <i>Table</i>	9.0 $(^{15}NO_2^-)$	E	2.0	-10
(2,c)	$21.2 (115NO2-Tyrac)$	E		
	241.9 $(^{15}NO_2^-)$	N	130	
Peroxynitrite (0.2M), T 268 K, Na ¹⁵ NO ₂ (2M), NaHCO ₃	9.0 $(^{15}NO_3^-)$	N	6	
$(0.05M)$, pH 7,5 (Table 2,d)	241.9 $(^{15}NO_2^-)$	N	200	
(^{15}N) Peroxynitrite (0.1m), T 298 K, Tyr (0.025m), pH	5.6 $(^{15}NO_2^-)$	A		110
12.5 [15] ^f)	238.8 $(^{15}NO_2^-)$	E		

Table 1. ¹⁵N-CIDNP During Peroxynitrite Decay and Nitration of L-Tyrosine [15] and N-Acetyl-L-tyrosine

^a) δ Values against Ph-¹⁵NO₂, positive δ values downfield. ^b) E=emission, A=enhanced absorption, N=no CIDNP. ^c) ¹⁵N-NMR Intensities after reaction. ^d) E=enhancement factor determined by Eqn. 1 and 2 from the data given in Table 2 and in [15]. \degree) No changes by using CO₂-free solvents. ^f) Yield of 3-NO₂-Tyr 0.45%, determined by UV/VIS spectral studies. Similar ¹⁵N-CIDNP spectra were observed at pH 7.6 and *T ca*. 273 K [15].

tion. The highest intensities are observed 2 min after starting the reaction, when the solution is homogeneous and the reactants are completely mixed. During the next 4 min, the intensities decay by a factor of 2 indicating a decay rate constant k = 0.006 s $^{-1}$. After that, the decay accelerates when the probe is warming. A spectrum taken after reaction is given in Fig. 1,b. It shows ¹⁵N-NMR signals of ¹⁵NO₂ and ¹⁵NO₃ with intensities corresponding to thermal equilibrium of the nuclear spin states. For describing the intensity of the ¹⁵N-CIDNP effect in ¹⁵NO₃, an enhancement factor E of 60 is determined by using *Eqn.* 2 with $T_1 = 90$ s ($T_1 = 140$ s is given in [34]).

For explaining the results, the observed decay rates at pH 7.5 will be discussed first. Peroxynitrite decay rates are known at pH 7.4 in phosphate buffer $(0.5M)$ in the temperature range $278 K < T < 323 K$ determined with an initial peroxynitrite concentration of 0.6 mm [35]. An extrapolation to 268 K leads to a decay rate constant $k=0.0025$ s⁻¹ which is similar to the decay rate found in the presence of $NaHCO₃$ and Tyrac $(k=0.006 \text{ s}^{-1})$ and without Tyrac $(k>0.01 \text{ s}^{-1})$.

The $15N$ -CIDNP effects observed in the presence of NaHCO₃ and Tyrac are explained as described (*Scheme 6*) [18]. Radical pairs $[CO₃^{-15}NO₂]^S$ generated by O-O bond scission of the $\binom{15}{1}$ peroxynitrite–CO₂ adduct, O=¹⁵NO–OCO₂, are responsible for the 15N-CIDNP effects. Nitration products are not formed because of the high concentration of Tyrac which effectively scavenges the radicals ${}^{15}NO_2^{\circ}$ and, therefore, prevents the recombination of ${}^{15}NO₂$ and the radicals Tyrac [7][14][36].

The missing of ${}^{15}N$ -CIDNP effects in the absence of Tyrac points to a lack of CO₂ under the applied reaction conditions which prevents the formation of the peroxynitrite–CO₂ adduct [37] (Schemes 2 and 7). Furthermore, there is a fast reaction without

Table 2. ¹⁵N-NMR Intensities I^a) during Decay a) of $\binom{15}{1}$ Peroxynitrite (0.03M), b) of $\binom{15}{1}$ Peroxynitrite (0.03M) with Tyrac (0.05M), c) of Peroxynitrite (0.2M) with Tyrac (0.1M) and $Na^{15}NO₂$ (2M), and d) of Peroxynitrite (0.2M) and $Na^{15}NO_2$ (2M) in the Presence of NaHCO₃ (50 mM) at pH 7.5 and 268 K

a) (^{15}N) Peroxynitrite/NaHCO ₃ system											
$t^{\rm b}$ $I(^{15}NO_2^-)$ $I(^{15}NO_3^-)$	1	2	3 2	10 2 4	100 1.8 ^c 4.0 ^c						
b) (^{15}N) Peroxynitrite/Tyrac/NaHCO ₃ system											
$t^{\rm b}$ $I(^{15}NO_2^-)$ $I(^{15}NO_3^-)20$	-15	2 -20 40	3 -15 30	$\overline{4}$ -10 25	5 -20 100	6 -10 100	7 2 40	8 2 10	9 $\overline{2}$ 6	10 2 5	100 (2.2 ^d) $4.2d$)
c) Peroxynitrite/Tyrac/Na ¹⁵ NO ₂ /NaHCO ₃ system $t^{\rm b}$ $I(^{15}NO_2^-)$ $I(^{15}NO_2^-)$ $I(3^{-15}NO_2$ -Tyrac) $I(1-15NO2-Tyrac)$	180 -7 -60 -25	2 130 -3 -2	3 160	100 $130e$) 2.0°) 0.32°)	d) Peroxynitrite/Na ¹⁵ NO ₂ /NaHCO ₃ system $t^{\rm b}$	100 3	2 200 6	3 200 6	100 200 6		

^a) Determined from the signal-to-noise ratios by using single 90 $^{\circ}$ pulses. $^{\circ}$) $t=$ Time [min] after mixing the reactants and putting the tube into the probe of the $^{15}N\text{-}NMR$ spectrometer. ^c) From $^{15}N\text{-}NMR$ spectra taken after reaction (16 scans, delay time 3 min). ^d) From ¹⁵N-NMR spectra taken after reaction (10 scans, delay time 3 min). Yield $(3^{-15}NO_2$ -Tyrac) < 0.03 (910 scans, delay time 3 min). ^e) From ¹⁵N-NMR spectra taken after reaction (235 scans, delay time 5 min).

involvement of $CO₂$ which is inhibited by addition of Tyrac. We propose that this is a $N₂O₃$ -induced decomposition of peroxynitrite under participation of free radicals OH, NO, and NO₂ [38–40] (Scheme 7). If CO_2 is present at the beginning of the reaction, it reacts to CO_3^{2-} and HCO_3^- during the first seconds. At low temperatures, $HCO_3^$ ions decompose to $CO₂$ only slowly as will be discussed now. From the half-life values of HCO_{3}^{-} at 298 K (26 s at pH 7 and 25 s at pH 8) and at 273 K (240 s at pH 7 and 300 s at pH 8) [37], half-lives of 380 s at pH 7 and of 500 s at pH 8 are extrapolated at 268 K. In the presence of Tyrac, the N_2O_3 -induced decomposition of peroxynitrite is inhibited as OH and NO₂ are effectively scavenged by Tyrac (*Schemes 2* and 6). The stationary concentration of CO_2 is high enough to form the peroxynitrite– CO_2 adduct in the presence of Tyrac but not in Tyrac-free solutions.

The weak emission in the ¹⁵N-NMR signals of ¹⁵NO₂ and ¹⁵NO₃ in the absence of Tyrac is explained by reactions of $({}^{15}N)$ peroxynitric acid with its anion (Scheme 8). ⁽¹⁵N)Peroxynitric acid $(O_2$ ¹⁵NOOH/ O_2 ¹⁵NOO⁻: pK_a 5.9) is known to be formed *via* recombination of superoxide anions O_2^- (HO₂/O₂⁻: pK_a 4.8) and ¹⁵NO₂² during decay of (^{15}N) peroxynitrite as a side reaction. This reaction does not lead to ¹⁵N-CIDNP effects in neutral medium. It has been observed during decay of (^{15}N) peroxynitric acid that the ¹⁵N-NMR signals of ¹⁵NO₂ and of ¹⁵NO₂ appear in emission [41] which has been explaind by reactions of the acid with its anion (Scheme 8).

The formation of $3^{-15}NO_2$ -Tyrac and of $^{15}N_2O_3$ is supported by high concentrations of ¹⁵NO₂ (*Schemes 2, 6, and 7*). Addition of ¹⁵NO₂ to the reaction mixture should, there-

Fig. 1. ¹⁵N-NMR Spectra of a solution of (^{15}N) peroxynitrite with Tyrac and NaHCO₃ at pH 7.5 and 268 K taken a) 3 min and b) 100 min after putting the tube into the probe (1 scan)

fore, enhance the yield of $3⁻¹⁵NO₂$ -Tyrac as well as the decay rate of peroxynitrite (Scheme 7). Both has indeed been observed, see Tables 1 and 2, c and d and Fig. 2, a and b. One minute after adding $\text{Na}^{15}\text{NO}_2$ (2M) to a solution of authentic unlabeled peroxynitrite and Tyrac at pH 7.5, strong emission signals are observed at δ 7.2, 9.0, and 21.2 which disappear 2 min later. After reaction, only the signals at δ 7.2 and δ 9.0 are observed which are assigned to ${}^{15}NO_3^-$ and $3-{}^{15}NO_2$ -Tyrac. The signal at δ 21.2 is due to the unstable cyclohexadienyl-like nitration product $1^{-15}NO_2$ -Tyrac [42]. The ^{15}N -CIDNP effects in the signals of $^{15}NO_3^-$ and $3^{-15}NO_2$ -Tyrac are explained as described (Schemes 6 and 8). Enhancement factors $E = -10$ and -400 are deduced by Eqn. 1 (Table 1). In the absence of Tyrac, ¹⁵N-CIDNP is not observed under the same conditions (*Table 1* and 2, *d*) as the reaction time is shorter than the relaxation time $(T_1 90 s)$. The reaction is completed before putting the tube into the probe of the spectrometer.

At pH 12.5 and room temperature, ¹⁵N-CIDNP experiments have been performed during decay of (^{15}N) peroxynitrite in the presence of L-tyrosine [15]. The reaction is finished within $\frac{1}{2}$ h. The ¹⁵N-NMR signals of ¹⁵NO₂ and of ¹⁵NO₃ appear in emission and enhanced absorption as observed at pH 7.5 [15]. No precautions have been reported for removing $CO₂$. Therefore, we think that the effects might be explained as described

(Scheme 6). From the spectra given in [15], a slightly higher E value is deduced than that observed at pH 7.5 and listed in Table 7 ($E=110$, see below).

Fig. 2. ¹⁵N-NMR Spectrum of a solution of peroxynitrite with Tyrac, Na¹⁵NO₂, and NaHCO₃ at pH 7.5 and 268 K taken a) 1 min (1 scan) and b) 100 min after putting the tube into the probe (235 scans). c) ¹⁵N-NMR Spectrum of a solution of (^{15}N) NANT, Tyrac, and NaHCO₃ at pH 4.0 and 298 K taken 3 min after adding H_2O_2 (1 scan). NANT=N-Acetyl-N-nitroso-DL-tryptophan.

4.2. ¹⁵N-CIDNP Experiments with (^{15}N) Peroxynitrite Generated in situ. The observation of ¹⁵N-CIDNP effects during *in situ* generation of (^{15}N) peroxynitrite by means of the reactions of H_2O_2 with N-acetyl-N-(¹⁵N)nitroso-DL-tryptophan ((¹⁵N)NANT) and with Na¹⁵NO₂ (*Scheme 1*) has already been reported [3] [17] [18]. In the following, a few additional experiments will be described to complete these results.

For performing ¹⁵N-CIDNP experiments with (^{15}N) peroxynitrite at pH *ca.* 7, the reaction of H₂O₂ with (¹⁵N)NANT is suitable (*Scheme 1*) [3]. During the reaction in the presence of $NAHCO₃$ with and without Tyrac, emission and enhanced absorption are observed in the ¹⁵N-NMR signals of ${}^{15}NO_2^-$ and ${}^{15}NO_3^-$ [3]. Quantitative results at pH 7.5 and pH 4.0 and room temperature were performed. The ¹⁵N-NMR spectrum shown in Fig. 3, a is taken from a solution of $({}^{15}N)NANT$ at pH 7.5 before adding H_2O_2 , the spectra in Fig. 3, b and Fig. 3, c, 18 min and 60 min after adding H_2O_2 . Details of the results and the time dependence of the signal intensities I are listed in Tables β and 4. The emission signal of ${}^{15}NO_2^-$ is observed for *ca*. 34 min, the enhanced absorption of the ¹⁵NO₃ signal for 54 min. An enhancement factor $E=110$ is found which is comparable to the values found during the decay of (^{15}N) peroxynitrite in the presence of Tyrac ($E=60$) and Tyr ($E=110$).

The effects are generated during decay of the (^{15}N) peroxynitrite–CO₂ adduct (*Scheme* 6) showing that the formation rate of $O=^{15}NO-OCO_2^-$ is higher than the decay rate of the (^{15}N) peroxynitrite under the given conditions. Because of the low stationary (^{15}N) peroxynitrite concentration, the $^{15}N_2O_3$ -induced decomposition is of no importance. The enhanced absorption in the ¹⁵N-NMR signal of ¹⁵NO₃ is of the 'c' type, the emission in the ¹⁵N-NMR signal of ¹⁵NO₂ of the '*e*' type which is transferred by reaction of two radicals ¹⁵NO₂ to ¹⁵NO₂ (*Schemes* 2 and 6).

Table 3. ¹⁵N-CIDNP during Reaction of $(^{15}N)NANT$ with H₂O₂, Tyrac, and NaHCO₃ at 295 K. $NANT=N-Acetyl-N-nitroso-DL-tryptophan.$

System	15 N-NMR Signals ^a)	$CIDNPb$)	$Yieldc$)	E^d	
$(^{15}N)NANT (0.1M)$, $H_2O_2 (3M)$, NaHCO ₃	8.7 $(^{15}NO_3^-)$	A	5	110	
$(0.05M)$, pH 7.5 (<i>Fig. 3, Table 4, a</i>)	178.4 $((^{15}N)NANT)$	N			
	192.8 $((^{15}N)NANT)$	N			
	241.8 $(^{15}NO_2^-)$	E	$\mathbf{1}$		
$(^{15}N)NANT (0.1M)$, $H_2O_2 (1M)$, NaHCO ₃	8.7 $(^{15}NO_3^-)$	A			
$(0.05M)$, Tyrac $(0.1M)$, pH 7.5	178.4 $((^{15}N)NANT)$	N			
	192.8 $((^{15}N)NANT)$	N			
	241.8 $(^{15}NO_2^-)$	E			
$(^{15}N)NANT (0.1M)$, $H_2O_2 (1M)$, NaHCO ₃	5.1 $(3^{-15}NO_2$ -Tyrac)	E	0.077	-1430	
$(0.05M)$, Tyrac $(0.1M)$, pH 4.0	$8.5(^{15}NO_2^-)$	E	8.5	310	
(Fig. 2, c, Table 4, b)	30.1 $(1 - {}^{15}NO_{2} - T)$	E			
	178.4 $((^{15}N)NANT)$	N			
	192.7 $((^{15}N)NANT)$	N			
	240.5 $(^{15}NO_2^-)$	E			

^a) δ Values against Ph-¹⁵NO₂, positive δ valued downfield. ^b) E=emission, A=enhanced absorption, N = no CIDNP. c) ¹⁵N-NMR Intensities after reaction. ^d) $E =$ Enhancement factor determined by *Eqn.* 2 from the data given in Table 4.

Fig. 3. ¹⁵N-NMR Spectra of a solution of $(^{15}N)NANT$ with NaHCO₃ at pH 7.5 and 298 K taken a) before adding H_2O_2 , b) 18 min, and c) 60 min after adding H_2O_2 (1 scan). NANT=N-Acetyl-N-nitroso-DL-tryptophan

Identical spectra are observed during the reaction of the system $H_2O_2/(^{15}N)NANT$ with Tyrac at pH 7.5 indicating that nitration products of Tyrac are not formed either. In contrast to this, nitration products of Tyrac are formed at pH 4.0 which appear in emission [3] (Fig. 2, c, Table 4, b). This might be due to the lower H-abstraction rate of nitrogen dioxide from Tyrac observed at lower pH values [43] [44] which raises the stationary concentration of free radicals ¹⁵NO₂. An enhancement factor $E = -1430$ is determined which is similar to that during nitrous acid catalyzed nitration of Tyrac with nitric acid ($E = -1440$; see below, *Table 7* [17]). An enhancement factor $E = 310$ is found for

Table 4. ¹⁵N-NMR Intensities I^a) during Reaction a) of $(^{15}N)NANT(0.1M)$ with H₂O₂ (3M) at pH 7.5, and b) of $(^{15}N)NANT(0.1M)$ with $H_2O_2(1M)$ and Tyrac (50 mM) at pH 4.0 in the presence of NaHCO₃ (50 mM) at 295 K

a) $(^{15}N)NANT/H_2O_2/NaHCO_3$ system at pH 7.5													
$t^{\rm b}$	Ω	1	6	10	18	34	54	60					
$I((^{15}N)NANT)$	3/2	3/2	4/1	4/1	4/1	2/1	-						
$I({}^{15}NO_2^-)$		-2	$\mathbf{0}$	-1	-2	-2	$\mathbf{0}$	1°)					
$I(^{15}NO_3^-)$		12	14	15	20	10	8	5°)					
b) $(^{15}N)NANT/H_2O_2/Tyrac/NaHCO_3$ system at pH 4.0													
$t^{\rm b}$	Ω		3	5	7	11	14	18	25	38	56	70	100
$I((^{15}N)NANT)$	3/1	3/1	3/1	3/1	2/0	2/0	2/0						
$I(^{15}NO_2^-)$		-4	-4	-4	-3	-3	-3	-2					
$I({}^{15}NO_3^-)$		100	160	160	100	100	80	60	40	30	20	10	$8.5d$)
$I(3.^{15}NO_2$ -Tyrac)	$\overline{}$	-8	-6	-4	-2								$0.077d$)
$I(1-15NO2-Tyrac)$			-3	-2	-2								

^a) Determined from the signal-to-noise ratios by using single 90° pulses. b) $t=Time$ [min] after mixing the reactants and putting the tube into the probe of the $^{15}N\text{-NMR}$ spectrometer °) From $^{15}N\text{-NMR}$ spectra taken after reaction (9 scans, delay time 3 min). d) From 15N-NMR spectra taken after reaction (180 scans, delay time 3 min).

the ¹⁵N-NMR signal of ¹⁵NO₃ at pH 4.0 which is higher than the value deduced at pH 7.5 ($E=110$). This might be due to a higher stationary concentration of CO₂ at pH 4.0 [37].

By using the system $H_2O_2/Na^{15}NO_2$ for generating (¹⁵N)peroxynitrite at pH 5.25, analogous ¹⁵N-CIDNP effects have been found (*Tables 5* and 6) [17] [18]. From the *I* values of ¹⁵NO₃ given in [17], $E = 290$ and $E = 320$ are determined in the absence and in the presence of additional NaHCO₃ (Tables 5 and 7). For getting these values, no special precautions had been performed to remove CO₂ from the solvents. Under these conditions, the $CO₂$ concentration seems to be high enough for allowing the formation of the (^{15}N) peroxynitrite–CO₂ adduct, even in the absence of NaHCO₃. For demonstrating the influence of CO_2 on the ¹⁵N-CIDNP effects in greater detail, the experiments were now repeated at pH 4.7 by using carefully degassed solvents (see Sect. 3, Exper.). The results are shown in Fig. 4 and the Tables 5 and $6, a$. For comparison, a spectrum obtained after adding NaHCO₃ to the solution is given in *Fig.* 5, *a*, the time dependence of *I* values in *Table 6, b.* In the absence of CO₂, the ¹⁵N-NMR signal of time dependence of *I* values in *Table 6,b*. In the absence of CO₂, the ¹⁵N-NMR signal of ${}^{15}NO_3^-$ shows a weak enhanced absorption during the beginning of the reaction which is converted to emission later. The ¹⁵N-NMR signal of ¹⁵NO₂ appears in weak emission all the time, and a further signal is observed in emission at δ – 19.5 which is assigned to $^{15}NO₄$ and/or its protonated form $H^{15}NO₄$. The enhanced absorption in the ^{15}N -NMR signal of ${}^{15}NO_3^-$ is explained by decomposition of the $({}^{15}N)$ peroxynitrite–CO₂ adduct formed by traces of $CO₂$ which are still present (Scheme 6). The emissiontype effect in the ¹⁵N-NMR signals of ¹⁵NO₂, ¹⁵NO₃, and ¹⁵NO₄ is caused by formation and decay of (^{15}N) peroxynitric acid as discussed [41] [42] (Scheme 8). Encounters of the radicals HO_2 and ¹⁵NO₂ lead to radical pairs $[HO_2^*$, ¹⁵NO₂]^F which are able to generate ¹⁵N-CIDNP effects (*Scheme 3*). This is not the case in radical pairs $[O_2^{\text{-}}$, ¹⁵NO₂]^F formed

System	¹⁵ N-NMR Signals ^a)	$CIDNPb$) Yield ^c)		E^d)
Na ¹⁵ NO ₂ (0.05 _M), H ₂ O ₂ (1 _M), AcONa (1 _M),	$8.8(^{15}NO_2^-)$	A	5	290
pH 5.25 [17]	241.7 $(^{15}NO_2^-)$	N		
Na ¹⁵ NO ₂ (0.05 _M), H ₂ O ₂ (1 _M), AcONa (1 _M), NaHCO ₃	$8.8(^{15}NO_2^-)$	A	5	320
$(0.05M)$, pH 5.25 [17]	241.7 $(^{15}NO_2^-)$	N		
Na ¹⁵ NO ₂ (0.05 _M), H ₂ O ₂ (1 _M), pH 4.7 (<i>Fig. 4</i> ,	-19.5 (¹⁵ NO ₄)	E		
Table $6, a)$	$8.7(^{15}NO_3^-)$	$A \rightarrow E$	8	ca. 0
	240.1 $(^{15}NO_2^-)$	Е		
Na ¹⁵ NO ₂ (0.05 _M), H ₂ O ₂ (1 _M), NaHCO ₃ (0.05 _M),	-19.5 (¹⁵ NO ₄)	E		
pH 4.7 (<i>Fig.</i> 5, <i>a</i> , <i>Table</i> 6, <i>b</i>)	$8.7(^{15}NO_2^-)$	A		240
240.1 $(^{15}NO_2^-)$		E		
Na ¹⁵ NO ₂ (0.05 _M), H ₂ O ₂ (1 _M), Tyrac (0.05 _M), NaHCO ₃ - 19.5 (¹⁵ NO ₄)		E		
$(0.05M)$, pH 4.7 (<i>Fig.</i> 5, <i>b</i> , <i>Table</i> 6, <i>c</i>)	5.0 $(3-15NO, -T)$ E		0.28	-1740
	$8.6(^{15}NO_2^-)$	A	6.0	260
	16.5 $(1^{-15}NO_2$ -Tyrac) E			
	240.1 $(^{15}NO_2^-)$	E		
$Na^{15}NO_2 (0.05M), H_2O_2 (1M),$ Tyrac (0.05M), NaHCO ₃ - 19.5 (¹⁵ NO ₄)		E		
$(0.05M)$, pH 5.25 (Table 6, d [18])	5.0 $(3^{-15}NO_2$ -Tyrac) E		0.7	-1520
	8.7 $(^{15}NO_3^-)$	A	7	430
	16.5 $(1 - {^{15}NO_2} - Tyrac)$ E			
	240.1 $(^{15}NO_2^-)$	Е		

Table 5. ¹⁵N-CIDNP during Reaction of Na¹⁵NO₂ with H₂O₂ and of Na¹⁵NO₂ with H₂O₂ and Tyrac at 295 K

^a) δ Values against Ph-¹⁵NO₃, positive δ values downfield. ^b) E=emission, A=enhanced absorption, N=no CIDNP. ^c) ¹⁵N-NMR Intensities after reaction. ^d) E=enhancement factor determined by Eqn. 2 from the data given in Table 6 and in [17] and [18].

from the unprotonated superoxide anion $O_2^{\text{-}}$ and ¹⁵NO₂ at pH *ca*. 7 [18]. In contrast to the results in CO₂-free solvents, a strong ¹⁵N-CIDNP effect in the ¹⁵N-NMR signal of ¹⁵NO₃ is observed in the presence of NaHCO₃ (*Fig. 5, a, Table 6,b*). The enhancement factor at pH 4.7 ($E = 240$) is similar to the values found at pH 5.25 (*Tables 5* and 7) [17]. For completing the results, a ¹⁵N-NMR spectrum taken during reaction of H_2O_2 with $Na¹⁵NO₂$ and Tyrac in the presence of NaHCO₃ at pH 4.7 is given in Fig. 5,b; details of the reaction, signal intensities I and enhancement factors E are listed in Tables 5 and 6,c. The ¹⁵N-CIDNP effects resemble those obtained at pH 5.25 (*Table 6,d,* [17]). The reaction rate is higher by a factor of 2because of the pH dependence of the *Baeyer–Villiger* reaction [1].

4.3. Calculation of ¹⁵N-CIDNP Enhancement Factors E_{calc}. Enhancement factors E of ¹⁵N-NMR signals of the nitration product $3^{-15}NO_2$ -Tyrac and of $^{15}NO_3^-$ have similar values (*Table 7*) if various nitrating systems are used. It is concluded that ¹⁵N-CIDNP effects are built up in identical radical pairs, $[\text{Tyrac}, \, {}^{15}\text{NO}_2]^{F}$ and $[\text{CO}_3^{-}, \, {}^{15}\text{NO}_2]^{S}$. This will be supported by calculations by means of the radical-pair model of CIDNP in *Ped*ersen's version $[25]$ which has been performed for nitration reactions of phenolic compounds with (^{15}N) nitric acid in AcOH (*Table 7*) [23]. It has been shown that the calculations describe the observed E values sufficiently. Therefore, the model-specific parameters will be accepted here for calculating the radical pair [Tyrac, $^{15}NO_2^{\prime}$]^F. By using g (Tyrac')=2.0046, η (AcOH)=1.056 mPa·s, η (H₂O)=0.894 mPa·s,

Table 6. ¹⁵N-NMR Intensities I^a) during Reaction a) of Na¹⁵NO₂ (0.05M) with H₂O₂ (1M), b) of Na¹⁵NO₂ (0.05M) with H_2O_2 (1M) and NaHCO₃ (50 mM), and c) d) of Na¹⁵NO₂ (0.05M) with H_2O_2 (1M), Tyrac (0.05M) and NaHCO₃ (50 mM), c) at pH 4.7 and d) at pH 5.25 and 295 K

a) $Na^{15}NO_2/H_2O_2$ system													
$t^{\rm b}$ $I(^{15}NO_2^-)$	θ 7	$\mathbf{1}$	$\overline{2}$ -5	$\overline{4}$	5 -7	6	7	10					
$I(^{15}NO_3^-)$		10	10	-7 $\overline{7}$		-4	2	8					
$I(^{15}NO_{4}^{-})$		-4	-4	-7	-4								
b) $Na^{15}NO_2/H_2O_2/NaHCO_3$ system													
$t^{\rm b}$	θ	$\mathbf{1}$	$\overline{2}$	$\overline{4}$	7	10	20	30					
$I(^{15}NO_2^-)$	7	-12	-15	-6	-4	-2	$\overline{}$						
$I(^{15}NO_3^-)$		320	320	220	120	40	10	7					
$I(^{15}NO_{4}^{-})$		-20	-16	-10	-4	-2	$\overline{}$						
c) Na ¹⁵ NO ₂ /H ₂ O ₂ /Tyrac/NaHCO ₃ system at pH 4.7													
$t^{\rm b}$	θ	1	$\overline{2}$	3	5	6	8	9	14	20	28	35	100
$I(^{15}NO_2^-)$	\overline{c}	-16	-8	-8	-8	-6	-3	-2	$\qquad \qquad -$	$\overline{}$		-	
$I(^{15}NO_3^-)$		400	400	260	100	80	40	25	20	10	6	6	6.0 ^c
$I(^{15}NO4)$		-8	-5	-2	$\overline{}$	$\qquad \qquad -$	$\qquad \qquad -$						
$I(3^{-15}NO_2$ -Tyrac)		-50	-40	-15	-12	-5	-3	-1					0.28c
$I(1^{-15}NO_2$ -Tyrac)	$\overline{}$	-15	-12	-5	-5	-2	-1						
d) $Na^{15}NO_2/H_2O_2/Tyrac/NaHCO_3$ system at pH 5.25													
$t^{\rm b}$	Ω	$\overline{2}$	7	12	17	22	27	32	42	52	62	72	100
$I(^{15}NO_2^-)$	5	-5	-2	-1	-1	$\overline{}$	$\qquad \qquad -$	$\overline{}$	$\overline{}$	-			
$I({}^{15}NO_3^-)$		40	80	130	100	100	100	80	50	30	20	10	τ
$I(3-15NO2-Tyrac)$		-6	-7	-15	-14	-10	-9	-6	-4	-2			(0.7 ^d)
$I(115NO2$ -Tyrac)		-2	-2	-3	-3	-3	-3	-2	-2	-1			

^a) Determined from the signal-to-noise ratios by using single 90 $^{\circ}$ pulses. $^{\circ}$) t = Time [min] after mixing the reactants and putting the tube into the probe of the $^{15}N\text{-}NMR$ spectrometer. ^c) From $^{15}N\text{-}NMR$ spectra taken after reaction (466 scans, delay time 3 min). d) From 15N-NMR spectra taken after reaction (51 scans, delay time 5 min) [18].

 E_{calc} = -1260 and E_{calc} = -1280 are obtained which describe the experimental values well. For calculating the radical pair $[CO_3^{-15}NO_2^{\bullet}]^{\text{S}}$, it is taken into account that the radicals react to 'c' products with a yield of 70% demanding $\Lambda = 0.7$ which gives $\lambda = 0.66$ if all the other parameters are not changed. It follows $E_{\text{calc}} = 370$ which is in good agreement with the experimental data determined at pH 4.0, 4.7, and 5.25, respectively. Thus, it can be safely deduced that the peroxynitrite-dependent yield of nitrate is exclusively achieved *via* nitrogen dioxide mediated radical reactions in the presence of $CO₂$. E Values found at pH 7.5 and 7.6 are smaller. Because of lower $CO₂$ concentrations, peroxynitrite might in part decay without formation of the peroxynitrite $-CO_2$ adduct. E Values might also be reduced by superposition of the enhanced absorption with the emission-type ¹⁵N-CIDNP effect built up in radical pairs $[O_2^{15}NOOH⁺, ¹⁵NO₂]$ ^S (*Scheme 8*) which was not quantified.

b) 2 min, c) 6 min, and d) 10 min after adding H_2O_2 (1 scan)

It was concluded that the emission observed in the ¹⁵N-NMR signal of ¹⁵NO₂ might be an 'e'-type effect built up in radical pairs $[CO_3^{-}, {^{15}}NO_2^{*}]^s$ as well of 'c' type generated in radical pairs $[O_2^{15}NOOH^-, {^{15}NO_2^*}]^S$. It was not attempted to discriminate between the two different origins of ¹⁵N-CIDNP either. Furthermore, 'e'-type polarizations

Fig. 5. ¹⁵N-NMR Spectra of a solution of Na¹⁵NO₂ and NaHCO₃ at pH 4.7 and 298 K a) 1 min after adding H_2O_2 , and b) with Tyrac 1 min after adding H_2O_2 (1 scan). S: Satellites.

might be lowered because of nuclear relaxation in radicals $[24]$. Because of this, E values of the ¹⁵N-NMR signal of ¹⁵NO₂ were neither determined nor calculated.

5. Conclusions. – During the decay of peroxynitrite in aqueous solution, various 15N-CIDNP effects are observed depending on reaction conditions like temperature, pH value, peroxynitrite concentration, and the immediate proximity of additional reactants like CO_2 or NO_2^- . The nuclear polarizations indicate the presence of radicals formed by direct or induced decomposition of peroxynitrite (Scheme 9). The ¹⁵N-CIDNP effects

a) T ca. 273 K. b) T 268 K. c) Without addition of NaHCO₃. d) In the presence of NaHCO₃. c) In the absence of $CO₂$. ^f) Calculated by using *Pedersen*'s treatment [25].

Scheme 9. Formation of Radicals during Decay of Peroxynitrite

are partially generated during decay and formation of peroxynitric acid, a reactive intermediate during the peroxynitrite decay (Scheme 8).

In the presence of N-acetyl-L-tyrosine, the life-time of peroxynitrite is prolonged because of the decrease of nitrogen dioxide and subsequently of N_2O_3 . As a consequence of this trapping, the nitration product 3-nitro-N-acetyl-L-tyrosine is formed showing $15N$ -CIDNP in the $15N$ -NMR signal of the nitro group which indicates the formation by recombination of the radicals Tyrac² and NO₂ (*Scheme 10*). Quantitative ¹⁵N-CIDNP investigations in the presence of $CO₂$ and Tyrac show that radical reactions are the most important pathways leading to NO_3^- and 3- NO_2 -Tyrac. Thus, there is no need to assume reaction mechanisms other than the radical-derived ones to account for the peroxynitrite-mediated chemistry in the presence of physiological $CO₂$ concentrations.

 \longrightarrow HCO₃⁻+ Tyrac^{*}

REFERENCES

- [1] A. Baeyer, D. Villiger, Chem. Ber. 1901, 34, 755.
- [2] E. Halfpenny, P. L. Robinson, J. Chem. Soc. 1952, 928; E. Halfpenny, P. L. Robinson, J. Chem. Soc. 1952, 939.
- [3] M. Kirsch, M. Lehnig, Org. Biomol. Chem. 2005, 3, 2085.
- [4] J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall, B. A. Freeman, Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 1620.
- [5] C. D. Reiter, R.-J. Teng, J. S. Beckman, J. Biol. Chem. 2000, 275, 32460.

 CO_3 + Tyrac $-$

- [6] H. Ohshima, M. Friesen, I. Brouet, H. Bartsch, Food Chem. Toxicol. 1990, 28, 647; H. Ischiropoulos, L. Zou, J. Chen, M. Tsai, J. C. Martin, C. D. Smith, J. S. Beckman, Arch. Biochem. Biophys. 1992, 298, 431.
- [7] S. V. Lymar, R. F. Khairutdinov, J. H. Hurst, *Inorg. Chem.* 2003, 42, 5259; C. Wang, W. M. Deen, Chem. Res. Toxicol. 2004, 17, 32; S. Goldstein, J. Lind, G. Merenyi, Chem. Rev. 2005, 105, 2470.
- [8] A. Denicola, B. A. Freeman, M. Trujillo, R. Radi, Arch. Biochem. Biophys. 1996, 333, 49; S. V. Lymar, J. K. Hurst, J. Am. Chem. Soc. 1995, 117, 8867.
- [9] O. Augusto, R. M. Gatti, R. Radi, Arch. Biochem. Biophys. 1994, 310, 118.
- [10] R. Meli, T. Nauser, W. H. Koppenol, *Helv. Chim. Acta* 1999, 82, 722.
- [11] M. G. Bonini, R. Radi, G. Ferrer-Sueta, A. M. D. C. Ferreira, O. Augusto, J. Biol. Chem. 1999, 274, 10802.
- [12] L. R. Mahoney, J. Am. Chem. Soc. 1970, 92, 5262.
- [13] S. Goldstein, G. Czapski, J. Am. Chem. Soc. 1999, 121, 2444.
- [14] G. R. Hodges, K. U. Ingold, J. Am. Chem. Soc. 1999, 121, 10695; G. R. Hodges, J. Marwaha, P. Paul, K. U. Ingold, Chem. Res. Toxicol. 2000, 13, 1287.
- [15] A. R. Butler, T. J. Rutherford, D. M. Short, J. H. Ridd, Chem. Commun. 1997, 669; A. R. Butler, T. J. Rutherford, D. M. Short, J. H. Ridd, Nitric Oxide: Biol. Chem. 2000, 4, 472.
- [16] M. Kirsch, H.-G. Korth, A. Wensing, R. Sustmann, H. de Groot, Arch. Biochem. Biophys. 2003, 418, 133.
- [17] M. Lehnig, Arch. Biochem. Biophys. 1999, 368, 303.
- [18] M. Lehnig, J. Chem. Soc., Perkin Trans. 2 2000, 2016; M. Lehnig, Arch. Biochem. Biophys. 2001, 393, 245.
- [19] J. Bargon, H. Fischer, U. Johnsen, Z. Naturforsch.,A 1967, 22, 1551; J. Bargon, H. Fischer, Z. Naturforsch., A 1967, 22, 1556.
- [20] G. L. Closs, C. E. Doubleday, D. R. Paulson, J. Am. Chem. Soc. 1970, 92, 2185; R. Kaptein, Chem. Commun. 1971, 732.
- [21] G. Winter, H. Shioyama, U. Steiner, Chem. Phys. Lett. 1981, 81, 547; I. V. Khudyakov, Y. A. Serebrennikov, N. J. Turro, Chem. Rev. 1993, 93, 537.
- [22] A. H. Clemens, J. H. Ridd, J. P. B. Sandall, J. Chem. Soc., Perkin Trans. 2 1984, 1659.
- [23] M. Lehnig, J. Chem. Soc., Perkin Trans. 2 1996, 1943; K. Schürmann, M. Lehnig, Eur. J. Org. Chem. 1998, 913; M. Lehnig, Tetrahedron Lett. 1999, 40, 2299.
- [24] M. Lehnig, H. Fischer, Z. Naturforsch., A 1970, 25a, 1963; M. Lehnig, H. Fischer, Z. Naturforsch., A 1972, 27, 1300.
- [25] J. B. Pedersen, J. Chem. Phys. 1977, 67, 4097.
- [26] M. Lehnig, Chem. Phys. 1975, 8, 419; M. Lehnig, Chem. Phys. 1981, 54, 323.
- [27] Landolt-Börnstein, New Series, Group II, 'Magnetic Properties of Free Radicals', Eds. K. H. Hellwege and H. Fischer, Springer-Verlag, Berlin, 1987, 1990.
- [28] J. R. Morton, K. F. Preston, S. J. Strach, J. Phys. Chem. 1975, 79, 2773.
- [29] R. C. Sealy, L. Harman, P. R. West, R. P. Mason, J. Am. Chem. Soc. 1985, 107, 3401.
- [30] R. M. Uppu, W. A. Pryor, Anal. Biochem. 1996, 236, 242.
- [31] M. Kirsch, A. Fuchs, H. de Groot, J. Biol. Chem. 2003, 278, 11936, R. Bonnett, R. Holleyhead, J. Chem. Soc., Perkin Trans. 1 1974, 962.
- [32] W. H. Koppenol, J. J. Moreno, W. A. Pryor, H. Ischiropoulos, J. S. Beckman, Chem. Res. Toxicol. 1992, 5, 834; J. W. Coddington, J. K. Hurst, S. V. Lymar, J. Am. Chem. Soc. 1999, 121, 2438.
- [33] D. M. Short, Dissertation, University of St. Andrews, 1998.
- [34] D. Schweitzer, H. W. Spiess, J. Magn. Reson. 1974, 15, 529.
- [35] S. Pfeiffer, A. C. Gorren, K. Schmidt, E. R. Werner, B. Hansert, D. S. Bohle, B. Mayer, J. Biol. Chem. 1997, 272, 3465.
- [36] S. Goldstein, G. Czapski, J. Lind, G. Merenyi, J. Biol. Chem. 2000, 275, 3031.
- [37] D. M. Kern, *J. Chem. Educ.* **1960**, 37, 14.
- [38] S. Goldstein, S. Saha, S. V. Lymar, G. Czapski, J. Am. Chem. Soc. 1998, 120, 5549.
- [39] G. Merenyi, J. Lind, Chem. Res. Toxicol. 1998, 11, 243.
- [40] G. Merenyi, J. Lind, S. Goldstein, G. Czapski, J. Phys. Chem. A 1999, 103, 5685; S. Goldstein, G. Czapski, J. Lind, G. Merenyi, Chem. Res. Toxicol. 1999, 12, 132.
- [41] M. Lehnig, M. Kirsch, H.-G. Korth, Inorg. Chem. 2003, 42, 4275.
- [42] M. Lehnig, M. Kirsch, Org. Biomol. Chem. 2006, 4, 721.
- [43] T. Suziki, H. F. Mower, M. D. Friesen, I. Gilibert, T. Sawa, H. Oshima, Free Radical Biol. Med. 2004, 37, 671.
- [44] W. A. Prütz, J. Butler, E. J. Land, *Int. J. Rad. Biol.* 1983, 44, 183.

Received March 22, 2006